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WcxomuenM. moJioKeHNeM HacTofAmel paﬁo'ru ABJIAETCH rconc'ra.'ra.lm.ﬂ, 9TO KOHBEH-
IMOHAJIBHBIH KBa.n'rono-Mexa.mmecxnﬁ popMam3M CYNIECTBEHHO HENOJIOH. Kak JomoJ-
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TyaJbHHX JaCTHIL. Ho,u;oGnoe MHOXECTBO IIPUCYTCTBY€T, XOTH M HEABHEM 06pa3oM, KaK
B x.na.ccmlecxoﬁ Mexa.nmce, Tak 1 B GOPMYJIHNPOBKE KBaHTOBO# MEXaHWKH B ¢a.30130M
npoc'rpa.nc'rne D :

I. ON THE PHASE-SPACE FORMULATION OF QUANTUM MECHANICS.
~ AIM AND ORGANIZATION OF THE PRESENT STUDY

The phase-space formulation of quantum mechanics has its origins in the work.
doneby Wigner [1Jand Wey!l [2]. Basically, it amounts to the assertion that
to each state function ¥(q, t) of a given quantum-mechanical “particle” of mass m
and to each quantum-mechanical “observable” A(g, p) correspond two functions:
F(q, t, p) and A(g, p), defined on the classical phase space of a partlcle (material
point) with mass m, such that the equality

- (Il) (A) /\If*(q, t)A¥(q, t)dg = //F(q, t, p)A(q, p)dgdp = (A)
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and the margina1 conditions

(1.2a) ' /F(q, t, p)dp = ¥ (g, £)¥(q, t)

L b

(1.25) / Plart, g = ¥ (0, )¥(p, )

that this is aii alternative formulation of quantum mechanics.- Most authors hOW., ,
ever, are far from the idea of equivalence between the phase-space formulatlon and
the conventional formulation. A characteristic example may be the first sentence of
a recently published fundamental survey on that problem [5] (one of whose authors
is Wigner): “It is well known that the uncertainty principle makes the concept
of phase space in quantum mechanics problematic” (italic is mine, A.A.). In fact,
for a number of authors’ [6—9] the uncertainty {indeterminacy) principle serves
as sufficient grounds for a categorical rejection of any application of the classical
phase space in quantum mechamcs “ ... where the relation of indeterminacy is
always at hand..: so that notkonly the continuous phase space but also its dlscrete
decomposition into cells ar devoid of meaning” [6] .

The relations of uncer Mnty are_,not the sole occasion for doubts about the
physical cogency of the pha.éé;s;iacé formulation of quantum mechanics. Some
aspects of thls formulatlon, whlch probably make it seem incompetitive with respect

1. The phase-space dlstnbutlons are not determlned uniquely by the state
- function: corresponding to each state there is an entire set of complex in general

Wigner—Cohen [10] functlons F(q,t, p) Whlch satisfy (I.2) and may be used for the
representation (I.1). A

2. Those of them which are bilinear functlonals of ¥ are not always positive

“definite, [11] hence they are often called quasidistributions.

3. None of the Wigner-Cohen functions satisfies the Liouville equation. Con--
sequently, the quasidistributions cannot be interpreted as densities of ensembles of
classical particles. In such a case the question inevitably arises: Can the phase-
space of a classical material point be the arena for statistics of entities different from
the classical material points, entities which moreover allow for (and even require)’
a signed (i.e. non positive-definite) density? The negative answer to this question
seems to be self-imposing: “Suppose now that & is a system which does not follow
the laws of classical mechanics. Then one cannot associate with it a phase-space ln}j",'
general.” [12] We shall see, however, that this conclusion, which seems forgone is. .
actually illogical. ;
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Another argument against the equivalence of the phase-space formulation with
the conventional formulation is that the return from operators to ordinary phase-
space functions (as observa.bles’) looks like an unacceptable regression, all the
more so because also in the phase-space formulation, in the final count, the phase-
‘space functions A(g, p) are determined through the operators (by the farmha.r cor-
respondence rules [13, 14] and not vice versa. Indeed, in the known phase-space
formulations a primary meaning of “observables” is attributed only to the operators,
while the classical dynamic quantities A(g, p) in (I]) are considered as secondary -
objects defined through the “observables” and devoid of any independent physical
meaning. Likewise, no independent meaning is attributed to the phase densities
(densities — of what?) F(q, t, p) and of the local quantities F A (the integrands in
(L.1)). It seems that the most widespread belief about the phase-space formulation
of quantum mechanics is that it is a formal approach which, in a number of cases,
proves to be inexplicably useful and effective, although it could not poss1bly ha.ve
an independent physmal meaning. :

This paper is an attempt to demonstrate that this is not so; desplte the fact
that the sceptic attitude toward the phase—space formulatlon is not unfounded.
;Actually, ‘what are the grounds for that? - - Cee om0
) -In my opinion the basic shortcommg of the phase—spa.ce formula.txon hes in-its
1ncompleteness There is no -answer to the most essential question: : :Distribution
of what is the F(g, t, p) distribution? “We know that, ‘as a. matter of .principle,
conventlonal quantum mechanics declines to answer the question as to what actually
is the quantum mechanical “particle”.when no one looks at it. A lot of efforts have
been expended to declare this question meaningless, but nevertheless this is hardly
a solution. So density of what is- F'(q, ¢, p)? . In classical statistical mechanics the
non-negative phase density describes ensembles of well defined entities — classical
particles. They cannot be the object of qua.ntum mechanics. But then we return
to the fundamental question:

Is it possible that entity exists, which is sufficiently different from
the classical material point to have quantum mechanical behaviour and,
at the same tzme, to be sufficiently kmdred to the classical materzal point
‘as to be placed in its phase space? - o : :

-The conventional phase-space formula.tlon followmg the orthodox mterpreta-
tion of quantum mechanics, has declined entlrely to investigate this problem which,
actually, is fundamental for any phase-space formulation. This refusal leads to the
necessity to fill the gap caused by it, as in the case of the ordinary interpretation,
with the artificial and created ad hoc operator theory of measurement.

The purpose of the present paper is to offer and substantiate a positive answer
to the fundamental problem formulated above, and thereby to demonstrate that the
conclusions, based on the principle of uncertainty, about the inapplicability of the
concept of phase-space in quantum mechanics are actually groundless. The idea is
that F(q, ¢, p) is the distribution density of really existing though supershortliving
ultramicroobjects (“particles-phantoms”) which we shall call quantons. We shall
see that, from a mathematical viewpoint, the quantons are in a certain sense trivial
objects although physically they can, initially, cause confusion. Their introduction
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makes it possible to overcome the objections resulting from the relations of uncer-
tainty, as well as the difficulties of the phase-space formulation connected with the
indefiniteness of the phase-space distributions. Besides, they make superfluous the
specially ad hoc introduced operator theory of measurement and make it possible
to shed new light on the role of the operators in quantum mechanics. Of course, all
that is not obtained free of charge. The price paid is full renunciation (in a certain
sense) of localness. It is quite possible that one may find this price too high, but
this is a matter of taste.

In Section Il we offer a possible interpretation of the non positive-definite
phase-space distributions, which amounts to ‘dualization of the dynamic charac-
teristics (we introduce the concept of anticharacteristics). Besides, we make the
transition to the seven-dimensions extended (with a temporal dimension) phase -
space. The quantons, with their dual antiquantons, are introduced in Section III.
Their natural areal is exactly the extended phase space. We demonstrate that they
have deep roots in both classical mechanics and in the conventional phase-space
formulation of quantum mechanics. The connection between the quantons and the
quantum-mechanical “particles” is postulated, and this makes it possible for the
properties of these “particles” to be considered as properties of their quantos. The
connection between the phase-space density of the quantons and the state vector
is postulated in Section IV, and the customary operators are introduced (not pos-
tulated) on that basis. In the light of the above, Section V treats the reduction
problem, while Section VI examines certain differences, observable in principle, be-
tween the quanton and the conventional approaches. Heisenberg’s relations and
the problem of the hidden parameters are the object of Section VII, while Section
VIII draws a comparison between the conventional approach and the one offered
in the present paper. The Conclusion, together with a general survey of the paper,
treats also the problem of relativistic causality.

II. PHASE-SPACE DENSITY OF THE ELECTRON

The object to be examined, “particle in a quantum-mechanical sense”, will be
called briefly with the traditional term of electron (although in this paper we shall
not take into account the existence of spin). It will become clear, from the definition
to be given, that the electron differs (quite substantially) from the classical material
point.

To describe the electron we shall use the quantities of mass m, charge e and
the following well known spaces:

1. Ordinary three-dimensional (classical) physical space @ of the variables ¢
(three-dimensional vectors), with (three-dimensional) volume element dg = dV/;

9. Three-dimensional moment-space Pp, of the three-dimensional vectors of
the moment p of a classical particle with mass m. The three-dimensional volume
element of this space is dp;

3. One-dimensional time 7" with instants ¢ and element time dt;

4. Four-dimensional classical (Galileo — Newtonian) spacetime QT of the
variables g, t with (four-dimensional) volume element dgdt; :
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5. Six—dimensiona,l phase-space QPy, of the variables ¢, p with volume element
dgqdp; '
6. Seven-dimensional (extended) phase-space QTP of the variables ¢, t, p with
volume element dgdtdp. Further on we shall use also the abbreviated notation

(I1.1) (z) = (g, t, p), dz = dqdtdp.

The functions A(z) defined in the QT P,,-space, which have physical meaning,
will be called physical characteristics of the electron or simply characteristics. We
have the kinematic characteristics :

p
(11.2) : . q, t’ v = ;
and the dynamic characteristics

(IL3) | |
2 :
Ar=e, Ay =m, Aa'=P,A4=2’; As = eU(g, t), A6=A4+A5,A7=qxp,.

each of them has well—known meaning (¢ X p is the vector product of the three-
dimensional vectors ¢ and p, i.e. the angular momenturn) .

A basic point in the present construction is the assumption that, parallel with
the conventional dynamic characteristics, their respective dynamic anticharacteris-
tics are also significant.

DEFINITION: Dynamic anticharacteristic correspondmg to the dyna.mlc
characteristic A(z) is the sign-conjugated to A(z) QT Pn-function (— A(:c))

There is yet another function which will play a fundamental part in our exam-
ination. We shall introduce it by the following

POSTULATE: To each electron corresponds a QT P, function F(z) which
satisfies the condition

(I1.4) ' //F(q, t, p)dgdp = 1.

This function shall be called signed instant Q P,,-density of the electron. The term
“signed” means that we do not presume F(z) to be positively definite (negative
values of F(z) are admissible as well). The implications relative to the physical
- meaning and to the concrete choice of this function will be discussed in Section IV.

Indefiniteness of (a random) distribution appears to be a contradictory con-
cept. To avoid this difficulty, we shall make use of the fact that to each function
correspond naturally two positive functions

(IL5) - F+=%(|F|+F)

(IL6) | F-= %(m _F)
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which obviously satisfy the conditions

(11.7). Ft20, F~ 20, F*F =0y,
(IL.8) ' F=Ft_p-,
(11.9) |Fl=F* +F~.

_ Though non-normalized to unity, the functions F* will play an essential part
In our investigation. In addition to these functions in the case of indefinite F it is
exepedient to introduce also the function

F(z) .
(IL.10) e(z) = { Far LF#0
_ : 0, ifF=0

(a “signed indicator”). Now we can write
(IL11) F=|Fle, €=+l

After the introduction of the anticharacteristics and the two functions F'* the
- introduction of the following definitions is natural.
DEFINITION: The quantity ‘

i 2
(IL12) Fra= A HE20
0, fF<0

is instant Q P,,,-density of the dynamic characteristic A of the electron; the quantity

(I1.13) FT<®={FA ifF <0

0, ifF20

is instant Q Pr,-density of the dynamic anticharacteristic (—A4) of the electron (e.g.
F~(—m) is instant QP,,-density of the antimass of the electron).
In view of (II.8) we have

(11.14) FA=F*tA+ F(-A),

i.e. FA may be viewed as a sum of densities of characteristics and anticharac-
teristics.- As already remarked, the non-negative densities F* are not normalized
toward unity (unlike the indefinite density F). This problem (actually the problem
of “density/densities of what?”) will become clear after the introduction of the
quantons, and now we shall continue with the survey of the quantities inherent to
the “indefinite formalism”.

DEFINITION: The quantity

(I1.15) < ./F+A¢,
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is the instant Q-density of the standard chafacteris_tic A of the electron; the quantity
(IL16) / F~(~A)dp

is the instant Q-density of the anticharacteristic (—A) of the electron.
DEFINITION: The sum of the last two densities

an /(F+—ﬁ"_-)A}1ps / FAdp

Is the instant effective Q-density of the dynamic characteristic of the electron (the
identity follows from (IL.8)). , ’ ‘

DEFINITION: The instant effective integral value of the dynamic character-
istic A of the electron is the quantity

(11.18) / (Ft — F~)Adgdp = / F Adqdp.

The same quantity shall be called instant integral value of the dynamic char-
acteristic A of the electron (without the adjective “effective”).
_ The problem arises whether it would not be more expedient to go.to the ex-
tended phase space QT P,,. This is certainly more natural since both the QPp,-
density F'(z) and the QP,,-dynamic characteristics A(z) are defined as functions
precisely in the QT P,,,-space. Moreover, in view of our purpose the transition from
QP to QT P, is not only natural and expedient, but necessary as well, since we
will have to bring in a density defined directly in QT P,,. That is why we shall
postulate the extension of F(z) from QP,, into QT P,,.

The extensions of F' and A from QP,, into QT Py, shall be introduced by means
of the constant . -

(IL.19) N=22,

which obviously has the dimension of freqﬁency and whose reciprocal value will be
denoted by the symbol T},

. h
(I1.20) T = 3 — NT,, =1. .

POSTULATE: The signed QT P,,-density of the electron is N F (z).

Here N is defined by (II.19), F(x) is the signed instant Q@ P,,-density of the
_ electron which setisfies (I1.4). '
DEFINITION: The quantity

(I1.21) +A(z)T,
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is the elementary action/antiaction of the characteristic A of the electron (e.g. the
elementary action/antiaction of the quantity me? is h).

DEFINITION: The QT P, -density of the elementary action/ antiaction
+ AT, of the characteristic A of the electron is the quantity '

(11.22) | - NFE(2AT,).

Corollary: In view of (I1.20), (I1.12) and (I1.13), the QT Pp-density of the
elementary action/antiaction of the characteristic A of the electron (11.22) prove
to be identical with the instant QPp-density (I1.14) of the dynamic characteris-
tic/anticharacteristic of the electron. ‘

In other words, with the transition QP — QT Py, thus postulated, the pro-
duct F A remains invariant : ‘

(I1.23) .FA— (NF)(AT,) = FA.

Corollary: The instant QPp, integral value of the dynamic characteristic of
the electron (I1.18) may be represented also by the QT Pr, quantities

(IL.24) / FAdgdp = /(NF)(ATm)dqdp.

Concerning the condition for the normalization of the QT Pp,-density NF of
the electr- by virtue of (I.4) the following equation is valid in QT P

t4+ Ty /2
(11.25) / NF(g, 1, p)dgdtdp = 1,
t=Tm/2

ie. NF is normalized to unity in each region of QT P, with boundaries the two
parallel six-dimensional planes t F T /2 = const.

~ Finally, it should be pointed out that to the extended QT P,,-density N F there
correspond naturally the two positive QT P,,-densities NF+ and NF~.

Tt will become clear in the following Section, after the introduction of the quan-

tons, that the extension performed is not only formally possible but is necessary as
well.

III. QUANTONS AND ELECTRONS

Let =’ be a given point of the QT Pm-space, 6(z, &) — a Dirac delta function
in QT P,, with support z’, and ¢’ — one of the two numbers +1. '
DEFINITION: The generalized function '

(I11.1) g'é(z, =)

is a quanton given in QT Py,. The support (") = (¢, i', p') of the delta function
(II1.1) is support also of the quanton, and t' is instant-support of the quanton.
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At ¢ = %1 the quanton is positive/negative (briefly p/n-quanton). The negative
quantons will be called antiquantons.
Origin of the quantons

The quantons are obviously potentially present in each function F(z) =
|F(z)|e(z), which may be represented as follows

(I11.2) F(z) :'/F(x’)é(z, g')dz' = /|F(:c’)|€(ac’)5(x, z')dz'.

In this manner it is possible to represent not only each Wigner—-Cohen function but
also the phase-space Q Pp-density pf of the classical material point. This problem is
essential for the phase-face interpretation of quantum mechanics and that is why we
shall dwell on it albeit briefly. As we know, the material point may be represented
in QP,, by the density

(111.3) po(a, t, p) = 6(q, qu(?))6(p, pu(t))-

Here q = gu(t) and p = pu(t) are the equations of the Hamilton Q P-trajectory of
the material point (assumed as given). We may now write

(I1L.4) 8@ = [ )

and this is the representation referred to. If the equations of the trajectory

(11L.5) —r
(111.6) p = pu(t)
(I1L.7) ‘ , t=tgt) ="t

are written compactly in the following manner:
(TIL.8) z = zu(t’)

then the density (II1.3) may be represented also as
(I11.9) po(z) = /5(1:, zu(t))dt’.

According to the definition given above, the integrand is nothing but a positive
quanton with point zy(t') as support. It follows that the quantons are connected
with p§(z) not only by (IIL.4) but also directly through (IIL.9).
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Our basic idea can now be formulated in the following two theses:

1. The extended phase-space density (the QT Pp-density) NF(z) of the elec-
tron :

(I11.10) NF(z)= /p(:c’)s(:c')é(:c, z')dz',

not only can be potentially presented as average density of quantons, but also it is
actually a (ensemble) density of quantons. In brief, the quantons actually exist.

2. The set of the quantons associated with a given electron is discrete (not
continual).

Of course, discreteness (quantization) is a basic principle in quantum physics.
We proceed to the description of a discrete set of quantons which is to play a basic
part in our approach.

Let {Z} be a given discrete (finite or enumerable) set of points (latticé) in |
QT P,, (with set of the indices {n}) and let e(z) be a given signed indicator in
QT Py,. ' ;

DEFINITION: The signed ultramicro QT Pp,-density

(IIL.11) | I'(z) = ZE(Z)é(w, z),

n

where n € {n}, will be called generation of quantons I'(z) with support the lattice

{z}, provided the arrangement in {Z} is in correlation with the time, i.e. provided
that ’ '
m n
(111.12) t<t—-m<un
: m n

(m and n are numbers of quantons, while ¢ and t are the respective instant-
supports). ' ‘

DEFINITION: A generation of quantons I'(z) is stochastic, when the points
{Z} of its lattice are distributed in the QT P,, with a certain probability density.
Under “generation of quantons” we shall always mean “stochastic generation of
quantons”. Besides that, we always assume that each generation of quantons is an
element of a statistical ensemble of generations of quantons. A statistical ensemble
of generations of quantons is each potentially unlimited set of generations which
have one and the same probability QT P,-density.

In our subsequent presentation, instead of “distribution of the supports of the
- quantons (from a given generation)” we shall refer more briefly to “distribution of
the quantons (from a given generation)”.

We now have at our disposal everything necessary to state our

BASIC POSTULATE: To each electron correspond:

I. One signed QT P,,-density N F(z).
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n _ .
II. One generation of quantons I'(z) = Y &(z)é(z, z) with QT Pp,-density of
n

the p/n-quantons N F*t (F(z) satisfies (I1.25), N is determined from (I1.19), e(z) -
from (I1.10), and F* from (I1.5,6)). In brief, an electron is a pair (F(z), I'(z)).
Instead of “the quantons from the generation of quantons corresponding to a
given electron” we shall further refer briefly to “the quantons of a given electron”.
According to the last postulate, the QTPp-density of the supports of the
quantons of a given electron is N|F(z)|. '
- DEFINITION: The marginal densities

(111.13) _ / NF*(g, t, p)dp

are the QT -densities of the p/n-quantons of a given electron. :
DEFINITION: The difference of QT-densities of the quantons and antiquan-
tons : '

(II1.14) . / N(P* - F)dp=NW(g, ?)

is the Q-density of the effective quantons of a given electron.
' Corrolary: It follows from (IL.8) and (I1.4) that the quantity W(g, t) (intro-
duced by the last equation) satisfies the conditions -

(111.15a) | W(g t)= / F(q,t, p)dp,
(II.156) /W(é,t)dq:l.

Corresponding to each quanton with support (;) = (6, rt1, ?7) is an event (Z, 7tx)
in space-time QT. This event will be called the appearance-disapperance in the
point g at the moment 1 of the given quanton. Thus the density NW determined
from (II1.14) is a density of events in the space-time QT. However, to each density
p(g, ) of events in space-time corresponds naturally the quantity Q-density of a
frequency of events taking place in the @-space. Indeed, for a given Q7 '-density

p(q, t) of events we have the following formula for the number of events dn which
lie in the dgdt element

(II1.16) dn = pdqdt.

Hence (dn/dt) = pdq is the frequency dv with which these events take place in the
dq volume, 1.e.

(111.17) dv = pdq.
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Finally, p = dv/dq is the Q-density of this frequency. It follows that the frequency
dv with which the effective quantons appear and disappear in the dg volume (in
this case p = NW) is

(IIL.18) - dv = NWdq.

Using the above and (II1.15), we obtain that the integral frequency [dv

o0
with which the effective quantons appear and disappear in the entire Q-space is
N = mc?/h. In other words, each N=! = T}, = h/mc? seconds, somewhere in

space probably appears and dxsappears an effective quanton with density of the

probability W(q, t).
Equation (II1.18) plays a major part in the interpretation offered and we shall

return to it in Section V. For the time being we shall go on with the introduction

of new concepts connected with the discretization of the set of quantons.
DEFINITION: Ultramicro QT P,,-density of the elementary action AT}, of
the dynamic quantity A of the electron is the QT P,,-function

(111.19) > £(2)6(z, 3)A(2) T,

n

n
(where Z e(x)é(:c, Z) is the generation of quantons which corresponds to the given

eIectron)

In the following definition Az is a physically infinitely small QT P,,-volume in _

which the functions A(z) and e(z) may be considered as constant.

DEFINITION: Micro QT P,,-density of the elementary action AT of the

dynamic quantity A of the electron is the average value

' 1 n

(I11.20) | = / > 6(x, 2)e(x) AT dz.
' Az 7

Since, according to the condition given, A(z) and e(x) may be considered
constant in Az, it follows that the densn;y (II1.20) may be represented also in the
following manner

(IL.21) -Alze(m)A(:c)Tm / S8z, B)dz
Az ™

(where z is an arbitrary point from Az). However, the integral here is equal simply

to the probable number N|F|Az of the supports T which fall into the element Az,
and since ¢|F| = F and NT,, = 1 it turns out in the final count that (III.20)
in the quantity FA = |F|eA studied in the preceding Section. So if we assume
the quantons to be real physical objects, F'A acquires direct physical meaning as
average instant @ Pp,-microdensity of the dynamic characteristic A of the quanions
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of the given electron. After we have shown that (II1.20) <:01nc1des with FA, the
quantity (II 17) (i.e. the instant effective Q-density of the dynamic characteristic
A) gets a “quanton” interpretation as an instant Q-microdensity of the dynamic
characteristic A of the effective quantons of the electron. Likewise, the quantity

[ F Adqdp (II.I/S), introduced above as instant effective integral value of the dy-

namic characteristic A of the electron, obtains direct quanton interpreté,tion as
instant Q) Pn-integral value of the averaged dynamic characteristic A of the effec-

tive quantons. In each phase-space formulation the quantity [F Adgdp is identified
with the so-called quantmm—mechamcal ‘observable” mean value, but, as a matter
of principle, no physical meaning is attributed to the integrand. It follows from
what has been said so far that in the proposed theory the quantons play the fun-
damental role of real albeit supershortliving carriers of all dynamic characteristics
of the electron. In this context we shall dis¢uss briefly the problem of the dynamic

characteristics of the individual quantons. In analogy with (II.24) the following
definition makes sense. ‘

n
DEFINITION: The instant integral dynamic characteristic X; of an individ-
ual quanton corresponding to A; (see (11.3)) is the quantity

n ‘n " n
(I11.22) Xi(t) = / 6(a, t, p; 4, t, P)e(a, ¢, p)Ai(g, t, p)Tmdqdp.

Corrolary:
n n n n
(111.23) , X,-(t) = ¢e(z)d(t, t)Ai(2)Tn.

Corrolary: The instant 1ntegra1 mass M of the individual quanton is the
quantity

n- n n h
(111.24) M(t) = e(z)é(t, t)c—2
‘ (follows from A; = m and (11.20)).
Corrolary: The individual p/n-quanton may be interpreted as a virtual

(supershortliving) classical particle with infinitely great (in absolute value) posi-
tive/negative mass

n n h n
(I1.25) | M = e(z) 5(t, ).

n
This “particle-phantom” appears at a moment ¢ in a point ¢, it exists during

an infinitely short time 5t = (6(¢, ;tl))'1 and disappears. The infinitely great mass
and the infinitely short lifetime of the quanton have a well determined product:

n n n
(111.26) e(z)Mc?6t = h,
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where the action quantization is directly expressed.

Corrolary: The seven linear by mass instant integral dynamic characteristics
of the individual quanton may be represented in the following manner

n

(111.27) X; = -_A:—lA,- = £(2)6(2, 1) Ai(z)Tm.

n n
For instance, for the momentum of the quanton we have P = M©v where v = ?7/ m
(according to (I1.2)) is the velocity of the quanton (regardless of whether it is

n 2
positive of negative). The kinetic energy of the quanton is M v /2, ete.
Corrolary: The averaged in time value of the characteristic (I11.27) for time

n n
interval T, (which includes the moment ftz) is £(z)A;(z). For instance, the mass
of a p/n-quanton averaged for time Trm is £m (for the momentum, kinetic energy,
etc., we have +p, £mp?/2 etc.). ;
Hence the quantons are sufficiently kindred with the classical material point.
so as to be contained in its (extended) phase space, while at the same time they
differ (essentially) from it because they are not bound in a continuous traiectory

but constitute a discrete lattice with stochastic distribution.

IV. DETERMINATION OF THE PHASE-SPACE DENSITY OF THE
ELECTRON THROUGH THE STATE VECTOR. INTRODUCTION OF THE
OPERATORS :

The physical meaning of the signed phase-space density F(q,t, p), according
to the basic postulate from Section 111, is the following: F£dqdp is the number dn
of the p/n-quantons which, for a time dt = h/mc?, appear and disappear in the
phase volume dgdp. We must now treat the problem of the choice of the function
F(q, t, p). Its definition will be made by means of the state vector. In our further
presentation o

a. We shall presume as familiar the meaning of the concept of state space, as
well as of the symbols |¥), |g), |p), (¥, ] etc. (the Dirac bracket notation) without
assuming the validity of Schrodinger’s equation; ,
‘ b. I shall denote the unit operator, while the asterisk* shall denote complex
conjugation;

c. The absence of k in a formula will mean that this formula has been written
in a system in which h = 1 =¢ (accordingly h = (27)~1). For completeness we
adduce the relations : :

av.1) o / lq)dalg) = T = / ip)dp(pl,

(Iv.2) (d'lg) = 8(q, "), (@'lp) = 8(p, F);
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(1V.30) (alp) = ™1 = ({plg))",

avay (@l0) = ¥(a, 1), (pl¥) = ¥(p, 1).

As we know, to each electron corresponds a (normalized) state vector |¥)
belonging to the linear vector (Hilbert) states space. Traditionally, the geometrical
language is used only thus far and the tensor [¥)(¥| is called matrix (or operator)
of the density. It would be more natural for |¥)(¥| to be called state tensor and
then, together with the state tensor and the state vector, it would be quite natural
to devote some attention also to the two (complex conjugated) state scalars

(Tl alp) (pl®)  and  (¥|p)(pla){al®)

(i.e. the scalar products of the components |g)(g|¥) and |p)(p|¥)) as well as of their
mean value which coincides with the real part of each one (e.g. the first) of them

%(‘I’l(l‘I) (alp){p| + |} (pla){a])|¥) = Re({¥lq)(alp){p|¥)).

The identification of the signéd phase-space density of the electron with that real
(but not positive in general) scalar will be accepted as
BASIC POSTULATE:

(IV.4a) F(g, t, p) = Re((Zlg){(glp) (p|T)).

In a coordinate representationv (IV.4a) reads -
(IV.4b) F(g,t,p) = Re(¥*(q, 1)ei2™- 1 (p, t)).

This function (belonging to the Wigner-Cohen class of functions) has been
introduced by Terletsky [15] and studied by Margenau and Hill
[16], M e h t a [17] and other authors. Further we shall use also the complexified
function of Terletsky, which will be denoted by F:

(IV 4c) F(q, t, p) = T*(g, )™ 1U(p, 1).

Corrolary: Following directly from (IV.4) is the validity of the marginal
conditions (1.2) which are satisfied also by the complexified density (IV.4c).

Let us make the following methodological remark: in a phase-space formula-
tion the most fundamental part is that of the phase-space density. Consequently,
its postulation may be substantiated only by methodological considerations (of
simplicity, etc.).
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INTRODUCTION OF OPERATORS

Let A(g, t, p) be a phase-space function (with or without physical meaning).
In view of (IV.4a) the density FA may be represented as follows

(IV.5) FA = Re((¥|g)(glA(g, t, P)Ip) (pI‘I'))

This reading suggests that F A may be written also by means of a linear operator
A(t) in the following manner

(1V.6) FA = Re((¥|q) (gl A()|p)(p|T)).

A sufficient condition for this representation is for the operator A to be defined as
the solution of the operator equation :

(Iv.7) | (alAlp) = (alA(g, t, P)Ip),

and this solution is the fbllowing-
s A= [ [1datalat, 1 ip)erte

By means of the last equality, a linear (pseudodifferential) operator is juxtaposed

"uniquely to each phase-space function (for which the integral (IV.8) is meamngful)
Conversely, through (IV.7) viewed as equation for A(q, t, p), to each operator A(t)
is Juxtaposed umquely the phase-space function

IV9)  Aletp)= ‘q'ﬁ;))'” = (pla) (dlA(0)lp) = (al A1) (pla).

In this manner, on the basis of the phase-space density (IV.4), a one-to-one
correspondence (correspondence rule, association rule) is established between the
phase-space functions A(g, t, p) and the linear operators A operating in the linear
space of the state vectors (actually A(t) is a second-rank tensor with components
A(g, t, p) in the mixed tensor basis |¢)dg(q|p)dp(pl). In this sense the operators
do not have the statute of entities with fundamental physical meaning which is
possessed by the dynamic characteristics, the phase- -space density and the quantons
themselves.

Corolaries: From (IV.6) and (IV. 1) we get the equalities

(V.10) [ FAdp=Re((¥la) (A1) = Re(¥" (g, ) Ag()¥(g, 1).

1)) [ Fadpdg = Re(w]419)) = Re [¥°(a, 04500, )
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(f-iq denotes the operator A in the g-representation).

The operator Re in (IV.11) becomes superfluous when the operator A (defined
from (IV.8)) is a Hermitian one. In this case (IV.11) becomes the initial equation
(L1). |

Corrolary. The operators corresponding according to (IV 8) to the seven basic
- dynamic characteristics A; (II.3) are exactly the well-known standard quantum
mechanical Hermitian operators.

It must be pointed out, however, that reality of the function A(g, t, p) in
(IV.8) does not ensure herrmtlcxty of A(t). This cannot be an objection (of a
logical nature) against the consecutive phase-space approach proposed, since it
is not based on the operator theory of observation and since, in particular, this
approach does not call for hermiticity of the operators. Non-conformity with the
conventional approach is at hand, for instance, in the case of the operator of the
radial momentum, and also in the case of the operator of the square of the angular
momentum. These discrepancies are essential on a conceptual plane and we shall
examine that in Section VI. Now we shall discuss the dynamics of the phase-space
density F.

Of course, the dynamics of F is determined umquely by the dynamics of ¥, i.e.
the Schrodmger s equation must lead to -an equation for F'. Indeed, if ¥ satisfies
Schrédinger’s equation, then F' satisfies the equation

aF Z( ),,11 o H O F _O0"H a"F

V.12
(_ ) d¢" Op®  Op* 9¢"

which at A = 0 is obviously reduced to the classical Liouville equation. Conversely,
(IV.12) and (IV.4) imply the validity of Schrodinger’s equation. So in a consecutive
phase-space approach, instead of Schrodinger’s equation it is possible to postulate
the phase-space equation (IV.12) which is a special case of the equation given by
Cohen in[10] as (5.1). As for the equation (IV.12), cf. [18-20].

However, there is another way of phase-space working out of Schrodinger’s
equation which, to the best of the author’s knowledge, has not appeared anywhere.

This is based not on the postulation of (IV.12), but on the postulation of the
condition

(IV.13) : /F.(H + %tg)dp =0,

where F is the complexified Terletsky function (IV.4c), H = H (q, t,p= ‘95 ) is the
classical Hamiltonian, while the complex function

In Ag (py t)

Y

(IV.14). S= S(q,t p) = Pu(p, t)+p +

is defined by means of the real phase ®y(p, t) and amplitude Ag(p, t) of the wave
function in p-representation: ¥(p, t) = Ag(p, t) x exp(i27®@yg(p, t)) . It is not
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difficult to see that under these conditions Schrédinger’s non-relativistic equation
is a direct corollary of (IV.13). The converse. is also true. It should be pointed
out that the trivial case of (IV.13) obviously is reduced to the Hamilton-Jacobi
equation. ,

We already have what is necessary to treat the problem of the experimental
determination of the physical characteristics of the electron. .

V. QUANTONS, THE OBSERVABLE “POSITION”, REDUCTION AND THE
PRINCIPLE OF SUFFICIENT CAUSE

In this section we shall study the problem of the localization (the reduction of
the wave function) of the electron in the light of the hypothesis of the existence of
quantons. To that end we shall avail ourselves of the concept of IDEAL REGIS-
TERING DEVICE (IRD) which will be characterized with volume AV-and with
the following

POSTULATE: A necessary and sufficient condition to register (localize) an
electron in the volume AV of a given IRD is for one effective quanton of this electron
to appear in the volume AV of the IRD.

It follows that the apperance of the first effective quanton of an electron in a
given IRD leads to recording (localization) of the electron in the IRD. Clearly, in
such a case the following is valid. ' ' '

Corrolary 1: The probability of localization (registration) of the electron in
the volume AV is proportional to the frequency with which its effective quantons -
appear in the volume AV.

Consequeritly, it is necessary to return to the problem of the frequency dv with
which the effective quantons appear in tne volume dg. It was established that this .
frequency is determined from formula (II1.18); the quantity W participating in it
is determined from (II1.14), and after the introduction of the postulate (IV.4) we
have for that frequency » v

2
mc? _,
(V.1) dv = - U* (g, 1)¥(q, t)dq.

We can now formulate yet another ‘
Corollary 2: The probability of localizing the electron in the volume dg is

(V.2) W(g, t)dg = ¥(g, i)_‘I”; (g, t)dg

(it follows from Corollary 1 and (V.1)). .

In this manner, in the approach proposed, the probability of localizing the
electron is related directly to the frequency of appearance of the effective quantons,
whereas Born’s postulate (V.2) turns out to be a corollary. It is necessary to remark
yet another assertion which follows from the hypothesis of existense of quantons and
is not only unknown in the conventional interpretation but clearly contradicts the
assumption that it is complete. This is the assertion that there exists a (statistical)
lower bound of the time necessary for the actuation of the registering device, this
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lower bound being due not to charactenstlcs of the device, but to the electron itself.
This is the time

(V.3) At = hz /\P*(q, t)¥(q, t)dq

AV

which, according to (V.1), is necessary for the appearance of an effective quanton
in the volume AV of the registering device. The existence of such capture time is,
as a matter of principle, subject to experimental verification. :

The introduction of the quantons makes it possible to offer a natural model
of the phenomenon called “reduction of the state” or, in the terminology adopted
by von Neumann, “Process 1”. According to von Neumann, whose opinion on this
matter may be considered as accepted by all who adhere to the conventional in-
~ terpretation, there are two fundamentally different types of interventions to which

a system may be subjected. First, these are. “the discontinuous, noncausal and
instantaneously acting experiments or measurements ... (processes 1)”. Second,
this is a “type intervention in material systems ... given by the time-dependent -
Schrodinger differential equation which determines how the system changes contin-
uously and causally in the course of time (process 2)” [21], Ch.V.1.

Unlike the conventional approach, in the one-offered, the introduction of the
quantons makes groundless the idea that the processes of type 1 shall be considered

~acausal and instantaneous. Besides, it becomes clear that the difference between
the processes of types 1 and 2 is far from being fundamental.

In reality, trivially true (for such possible interpretation) is that the assertion
“at the moment ¢ =  the electron is in the registering device” is equivalent to the
assertion: “at the moment ¢ = 0, ¥ = 0 outside the registering device and ¥ # 0
in it”. Let, at ¢ < 0, ¥ # 0 in a volume W which contains (and possible exceeds
many times) the volume AV of the registering device. Consequently, at ¢ < 0 the
boundary conditions for ¥ have been ¥ = 0 on the boundary of W, at the moment
t = 0 these conditions have passed discontinuously, with a jump, on the surface of
the registering device.

There are no obstacles to accept, however, that ¥ is subordinate to Schrodin-
ger’s equation all the time, including at the moment ¢ = 0. In such a case the
difference between processes 1 and 2 will turn out to be difference only in the '
type of the boundary conditions for ¥ — static (or quasistatic) for processes 2 and
discontinuous in case 1 (c.f. the performance on a string instrument of the violin
or, better still, of the guitar type). This obviously is not a difference of principle.
The question is what could have caused the jump in the boundary conditions. The
answer is: nothing could have caused this jump, according to the conventional
interpretation in which, by definition, the description is complete only through ¥,
and it becomes necessary to assume that it is acausal: “nature... has disregarded
the ’principle of sufficient cause’. [21] With the existence of the quantons it is
absolutely natural to assume that the triggering of the registering device is caused

by a quanton that has appeared in it: In this case causality becomes obvious,
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reduction proves to be subordinate to the principle of sufficient cause, while Born’s
postulate about the meaning of ¥*¥ turns out to be a corollary of the postulate
formulated at the beginning of this Section.

One possible answer to the question as to why precisely the effective quan-
tons are playing a part in the reduction is the following: the registering device,
which is a physical system in unstable energy equilibrium, can be triggered only by
the introduction of positive energy (action, respectively) into it. An antiquanton
‘introducing negative energy (action, respectively) not only does not destroy the
equilibrium, but it even stabilizes it; destroying in advance the action of the first
positive quanton that had appeared after it. As a result, it is precisely the fre-

quency of appearance of the effectzve quantons that is significant to the actuation
of the registering device.

"VI. QUANTONS AND “OBSERVABLES”

As we have already stated, the operators of the seven dynamic characteristics
(I1.3), determined by the correspondence rule (IV.8), coincide with the conventional
ones. Consequently, the average values of the quantum-mechanical “observables” —
charge, mass. moment, kinetic, potential and full energy and angular momentum —
coincide with the quantum averages of the respective quantities. The interpretation,
however, is quite different, It is not at all necessary in the approach offered to
postulate that to each “ohservable” corresponds an instrument which measures
its.values. On the other hand, with the existence of the quantons, it becomes
a trivially explainable fact that the sole “observables” which are really observed
(and not calculated) are the volume AV of the recording device and the instant
to (more accurately the time interval At) of localization. All other “observables”
are in practice “definables” whose values are determined by means of the theory
and of the real observables AV and Atg. Of course, this does not mean that the
approach offered includes some theoretical ban on the direct observation of the local
quantities F* A and the integrals from them. The possibility for direct observation
of these quantities remains open for the time being.

~ In the approach offered the eigen-functions of the operators “observables” cor-
respond to states in which the respective dynamic characteristic of the (quantons
of) the electron has a constant marginal Q-density (no dispersion in co-ordinate
space). However, this does not mean- that, in the respective cases, there 1s no
dispersion 1n the phase-space.

Concerning the “numerical” incongruences between the approach offered and
the conventional onc, they are due to the fact that for each phase-space formulation
of quantum mechanics (i.e. for each choice of the Wigner — Cohen density) the
correspondence

(VL1) H(A(g, p)) = H(A(4, P))

(H(z) is any function of z), which is considered as a basic one in the conventional
interpretation, is violated [10] (in [10] this fact is considered as the reason why
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true phase-space distribution cannot be defined at all). In particular; under the
correspondence rule (IV.8) adopted in the present paper, corresponding to the

phase-space function ) Cn(g,t)p™ is the operator S Cn(g, t)(D)", 1e. we have
n n - .

(V1.2) S Calg, )" 2 D Cald, B

(Cn(g, t)) is a one-parameter family of QT-functions with parameter n (the same
symbol is the exponent of the monomials p* and (p)"; 4 and p have the conventional
meanings.) The proof of this last assertion is obvious, and almost obvious is the
fact that at (VI.2) the correspondence (VL.1) is violated. A typical example of
such a violation is the square of the angular momentum. Whereas the operator of
the -angular momentum determined by (V1.2) or (which is just the same) through
- (IV.8) coincide with the conventional operator L = § x p, the operator of the square
of the angular momentum determined by (VI1.2) does not coincide with the square
of the operator of the angular momentum. It is not difficult to see that, according
to (VL.2), corresponding to the phase-space function L%*(g,p) = (g % p)? is the
operator

(V1.3a) (L)? - 2ikg.p = (L)? - 27121'%,

while in the conventional interpretation, to the square of the angular momentum
corresponds the operator :

(VL3b) (£)? = (4 x B)*.

This means that in the approach offered the operator of the square of the angu-
lar momentum does not coincide with the square of the operator of the angular
momentum. It must be remembered, however, that the operators do not play a
fundamental role in the approach offered, so that the incongruence indicated is
actually of no significance. o ,

A second contradiction, which is essential on a conceptual plane, between the
conventional approach and the one proposed, is the contradiction on the problem
of the operator of the radial momentum. ' :

It is usually said that the momentum operator is vectorial and (in g-representa--
tion) has the form

(V14) p = —ihgrad.
According to this, in spherical coordinates we must have

3]
=4 S e B
(VI'M), , Pr = m@r'-'

Precisely this operator (i.e. pr) corresponds to the dynamic characteristics radial
momentum (i.e. p,) by virtue of the correspondence rule (V1.2). Consequently,
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in the formulation proposed the operator of the radial momentum is the operator
(VI.5a).

However, this opera’cor 1s undcceptable for the conventlonal interprtation since
it is not Hermitian. That is why, as “genuine” operator of the radial momentum 1s
- taken [7, 22, 23] the operator

61 . .
or r)p th

)

(VL5b) —ih( =

ﬁlp—-&

which obviously is not the radial component of the momentum operator, but 1t is
Hermitian (at least formally — [23]-Ch.7, Sec.8). Of course, there is also difference
in the determination of the squares of these quantities. Whereas in the approach

offered the opepator which, according to (IV.8), corresponds to the square of the
radial momentum is

26"
a')a

the conventional operator of the square of the radial momentum (the square of the
(VL.5b) operator) is

(VI1.6a)

ér2  ror’ r2 dr 8r

The two operators studied — that of the radial momentum and that of the
square of the radial momentum — participate as addenda in the operator of the
kinetic energy. It is an essential fact that the latter operator is the same in both

the conventional and in the proposed approach: it turns out that the differences in
the components compensate-each other. The identity

2186 ,,0 , _ h? B? 1 9 0
" 9mr? 67'( ) 2mr2( ) = omor? + _m—-((L) _QHTE;)
means precisely that.

The difference between the two approaches is that in the conventional one the
summar}d

(VL6b) R (

| (VL)

. 2208
(V1.8) . o7 B
is related to the radial part of the operator of the kinetic energy (i'.e. to the radial
kinetic energy), whereas in the approach offered the same summand is related to
the second term of the right-hand side of (VL.7), i.e. to the transversal kinetic
energy. Thus in the proposed approach the transversal kinetic energy is a sum of
two components: the first one connected with the operator

L1 gy

(VL9) s

and the second one with the operator (VI.8). In the quanton approach the interpre-
tation of these two components is simple: the energy connected with (VI.8) is due
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to the fact that the quantons in the general case have not only a radial component
of the velocity but also an orthogonal component to the radial one, i.e. a transversal
component of the velocity. Consequently in general both the momentum and the
kinetic energy possess also the two kinds of components — radial and transversal.
When the electron cloud revolves as a whole, e.g. hydrogen atom in p, d ... , etc.
(though not s!) state, the transversal (drift) kinetic energy has, as its operator,
the standard one (VL9). In the s-state there 18 no systematic (drift) transversal
velocity, the chaotic transversal momenta have zero average value (at each point
q), but their squares are not compensated and they make a contribution to the
kinetic energy through the operator (VI.8). We shall not dwell here on the proofs
of these assertions (which are actually trivial). ,

In the concluding part of this Section we shall remark that, within the frame-
work of the approach proposed, the inequality '

(VI.10) (AM)?(27)2 > h

proves to be universally valid, unlike the conventional approach in which AM, =
0 = (AM.)? in the s-state. This is so, because in the quanton approach the
dispersion of the angular momentum is determined by the sum of the operators
(VL9) and (VL8), and not only by the operator (VL.9). On the other hand, for
each function ¥, such that r39*y 0, the following readily verifiable equality

r—+00
holds

d
* 2 — 2_
(VL.11) /\I! (—2n r—ar)xpdv =3k

It involves the second operator from the brackets in the right-hand side of (VLT)
and leads directly to (VI.10). : '

VII. QUANTONS, HEISENBERG RELATIONS, HIDDEN PARAMETERS

Let us consider a concrete example — say, an electron with mass m a 10-%7 g
(an electron in the specific sense). In this case the characteristic frequency is-
N = (mc?/h) ~ 102° sec=! and this is the frequency with which the effective
quantons of the electron appear in the entire physical space. Consequently it may
be said that at least 1020 times per second the electron has precisely determined

n n n

dynamic characteristics (mass M , momentum (M /m)p, energy E, etc.) localized in
n :

a precisely determined instant ¢ of time in a precisely determined point 3 of physical

space, although all pairs (3, ?)) are different. Concerning the position of the electron,
1t must be pointed out that q does not mark the position of the electron in the

n
instant ¢: the electron which consists not only of the generation of quantons but of
the wave function as well, is not a point-like object at all. It is an extended object
whose volume coincides with the support of ¥(¥(q) # 0 « g € AV, where AV is
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the electron volume). However, 3 determines the possibility for localization at the

instant 1.

- Under these conditions the meaning of the Heisenberg relations becomes quite
clear: these are connections between the dispersions of the physical characteristics
of (the quantons of) the electron, averaged for time At > T,,,. The simplest example
is the free electron with uniquely determined momentum (de Broglie’s flat wave). In
this case all quantos of the electron appear with one and the same velocity v = p/m
and have one and the same average in time (for the interval 7,) momentum p
(consequently Ap = 0), but the appearances of the quantons in physical space are
entirely uncorrelated — each point ¢ being equally probable for the appearance of a
quanton — consequently the dispersion of the coordinates of the various quantons is

Aq = co. In this sense the free electron differs quite substantially from the classical
material point, since the electron spreads in the entire infinite physical space.
Another example of dispersion is that of the angular momentum studied in
the preceding Section. In a similar way it is possible to treat also the dispersion of
each dynamic characteristic. In each case of this kind, within the framework of the
proposed theory, we may speak of indeterminacy (or more accurately non-unique,
i.e. polyvalent determinancy) of a given physical characteristic only when there are
more than one quanton for the time interval during which the given characteristic
is averaged. '
Closely related to the problem of dispersion is that of the hidden parameters.
According to the well known von Neumann’s theorem about the hidden parameters,
~ there are no dispersion-free quantum-mechanical ensembles. Of cource, it is an error
to interpret this result as a proof for the non-existence of hidden parameters. Von
Neumann’s result merely states that if hidden parameters exist their dispersion
cannot be smaller than the corresponding specific quantum-mechanical dispersion
intrinsic to an individual microobject. The theory proposed in the present paper
is completely compatible with this result. According to this theory, the individual
electron itself represents a statistical ensemble (generation) of quantons.

" The dispersions in this ensemble (according to its definition) are the well known
quantum-mechanical dispersions (the density F satisfies the marginal conditions
(I.2)). It follows that no ensemble of electrons can have dispersions smaller than
the dispersions of the individual electron. However, this is valid only if the indi-
vidual electron is studied at time intervals sufficiently greater than 7;,; otherwise .
the dispersions lose their meaning for the separate electron, but 7y, is the time
boundary of the statistical quantum-mechanical description of the individual elec-
tron. The fluctuation phenomena (separate in time appearance of quantons) begin
to dominate completely below that boundary. Concerning fluctuation phenomena
due to the separate appearances of quantons in space, one such typical phenomenon

-is obtained at the fluctuation-type localization of the electron (e.g. at the two slits
experiment) in separate microvolumes which are macroscopically perceived as sep-
arate points.
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VIII. COMPARISONS

The proposed approach has both a lot in common and certain essential dif-
ferences from the classical mechanics of a material point, from the coventional
phase-space formulation of quantum mechanics, and from the conventional (ortho-
dox) quantum mechanics. The similarities lie in the fact that the quantons are
nothing but basic functions in the extended phase — (QT Pp) space which is the
same both in the classical mechanics of a material point and in quantum mechanics.
Let us discuss this problem. _ '

Quantons and classical mechanics. As we saw, quantons are at hand in
classical mechanics as well (cf. I11.4 and IT1.9). Only, in the classical mechanics of a
material point their set is assumed to be (actually without any intrinsic necessity)
cotinuous (not discrete) and also arranged along a QT Pp,-trajectory. The concept
proposed in this paper is in a certain sense, a direct generalization of classisal
mechanics, since each classical QT'P,,-density of a material point may be seen as
one (continuous) generation of quantons. It is obvious, however, that there are no
Intrinsic grounds to believe that each generation of quantons must be arranged on
one QT Pp-trajectory. What has been said is sufficient to warrant the assertion
that classical mechanics is obviously subject to generalization along the line of the
structure of the set of quantons which (though implicitly) has always been present
in it. ’

Quantons and the phase-space formulation of quantum mechanics.
Because of what has been presented thus far, the author believes it to be evident
that Heisenberg’s relations can neither be an obstacle nor do they make problematic
the introduction and utilization of phase-space in quantum mechanics. On the
other hand, the introduction of the dualism of characteristics — anticharacteristics
(i.e. the introduction of the binary characteristics (A, —A)), combined with the
dualization of the phase-space density (the introduction of the binary densities F¥)
liquidates the difficulty involved in the indefiniteness of Wigner’s distribution even
without the use of the quantons. However, the dualism of the bicharacteristics and
bidensities finds its natural grounds in the quantons-antiquantons dualism. This
latter dualism is, in itself, “more natural” than a monism of positive quantons
only (just as the existence of the set of real numbers may be considered as “more
natural” than the existence only of the set of positive' numbers).

Besides Heisenberg’s relations and the indefiniteness of the Wigner’s distribu-
tion there is yet another sourse of suspicion toward the phase-face formulation —
Cohen’s no-go theorem (the violation of (VI.1) for each Wigner distribution [10].
- From the viewpoint of the operator theory of observation, this incongruence makes
virtually impossible any phase-space formulation of quantum mechanics. From the
quanton viewpoint this incongruence leads to rejection of the operator theory of
observation. As a matter of principle, this problem can be solved by experiment.
For instance, if it is experimentally established that Heisenberg’s relation (VI.10) is
valid'in an s-state as well (e.g. of the hydrogen atom), this would mean experimen-
tal refutation of the operator theory of observation since, according to this theory, -
in the s-state the dispersion of the angular momentum is equal to zero.
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Cohen’s no-go theorem could be fatal to any phase-space formulation of quan-
tum mechanics if the following proposition turns out to be true:

There exists a set of the following experiments: ) ... v 2) ,

......... y M) -........, whose results could be explained only by the operator
theory of observation (ie. they cannot be explained for any selection of Wigner’s
distribution). ' ‘
‘ No one has ever shown this proposition to be true. Consequently Cohen’s
no-go theorem cannot be taken as experimental argument against the phase-space
formulation. Nor can it constitute a theoretical argument from the proposed phase-
space version, which is not only independent from the operator thepry of observation
but also claims to establish its origin. Let us remark once again that in the proposed -
quanton phase-space formulation the theoretical status of the “observables” (i.e. of
the dynamic characteristics) is exactly the same as in the classical physics.

IX. CONCLUSION

In conclusion we shall summarize the results provided by the concept of quan-
tons and shall dwell on the problem of the price involved. We shall also say a few
words about the trend of development of that concept.

First of all it may bg maintained that if the quantons really exist, then their
study amounts to studying the ultramicrostructure of matter — an objective suffi-
ciently honourable and promising in itself. In addition, the existence of the quan-
- tons, which is directly connected with the quantization of action, would mean that:

1. Quantum mechanics without quantons is essentially incomplete, Just as clas-
sical mechanics would have been incomplete without them, i.e. without the object
of material point. This incompleteness is compensated by the ad hoc introduction
of the operator theory of observation. ,

2. Hidden parameters do exist but they are non-local (in accordance with the
results obtained by Bell [24] ), stochastic (in accordance with von Neumann’s
theorem) and ultra-fast variable (which has not been assumed so far). Univalent
(Laplace) determinism is not relevant to quantum mechanics, but the principle of
sufficient cause continues operating in it as well. ,

3. The particle-wave dualism finds a rational explanation, together with the
problem of the reduction, the relations of indeterminacy, etc., without reference
to a special theory of observations. In contrast wiht the orthodox approach, the
operators “observables” are defined via the dynamic characteristics, and not vice
versa. , ’

4. There are quantities which are, in principle, measurable (there is no theore-
ticalban on their measurement), whose existence contradicts the orthodox interpre-
tation: these are the ultramicrodensity (IT1.19), the local densities F tH+A)=F4A
(cf. TIL. 21), the recording time (V.3), and the dispersion (VL.10). The possibility
for the practical realization of the corresponding experiments is probably of decisive
psychological significance, but it is of no significance to the logic of the theory.

The price which must be paid for the discretization of the set of the quantons
Is to give up the continuity of the QT Pp,-trajectory of the classisal particle and to
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replace it with the discrete random QT P,,-lattice of the quantons. It is natural for
such a step to be a psychological barrier, but this is a matter of psychology and not
of logic. From a logical point of view, an atomism which goes as far as discretization
in time (this being precisely the underlying idea of the quanton approach) seems
undoubtedly more consistent than the classical atomism in which discreteness holds
only in space, and not in time. Let us nothe once again that the discreteness in time
which we have in mind is in fact discreteness (quantization) of action (f. III. 26).

Another psychological barrier may be the widespread though unfounded belief
that causally connected events may form only timelike pairs in Minkowski space.
The quanton approach is in obvious contradiction to that requirement. For instance,

in the case of a flat wave — free de Broglie “particle”, the distance ln_qH — Z[ is

by necessity unlimited, while n-t{-l —t = Tm = h/mc® always. The rejection of
“relativistics” causality makes it necessary to treat the problem of the essence of .
the (special) theory of relativity.

The author of this article shares the view that the essence of the special theory
of relativity lies in establishing a mathematical model of the realities that are
perceived intuitively as space, time and matter. To wit: the space-time has as its
mathematical model the well-known (four dimensional) Minkowski space; matter
1s modelled by likewise well-known conservative energy-momentum tensor. The
structure of this tensor is the object of a series of additional postulates, among which
the postulate about the “relativistic” causality may be included as an independent
postulate, although (without any fears) it may also be left out precisely because it
is an independent postulate and not a deduced corollary. Consequently, rejection
of the “relativistic” causality is logically admissible. Causality in our approach is
ensured by the requirement for the existence of a privileged arrangement in the
set of the quantons making up a generation (in a relativistic formulation, the time
referred to in (II1.12) is the proper time of the electron).

"The problems arising from the relativistic aspects of the quanton approach are
treated by the present author in [25]. :
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CAMOCTOSATEJIBHAA ®A30BO-IIPOCTPAHCTBEHHASA
dOPMYJIHNPOBKA KBAHTOBOM MEXAHMKU KAK CTATUCTUERA
BUPTYAJILHBIX YACTUI *

A. X. Anacmacoe
(PezomMme)

IIpennaraeTci NOAXOXA K KBaHTOBOM MeXaHHKe, OCHOBAHHIA Ha CleNyHOUWHX MOJO-
sermax: 1. KOHBEHIMOHAJbHOE KBAHTOBO-MEXaHMUYECKOE OMNCAHUC dusuueckoil peayb-
HOCTH HETIOJBEO; 2. IPVWUAHHbE BIMSHAL, PaCHPOCTPaHAIOMNECH GucTpee cBeTa, BOJHE
COBMECTHMEI C TeopHeil OTHOCHUTEIBHOCTH.

B nmomojHeHMe K CTaHIaDTHOMY KBaHTOBOMEXaHNIECKOMY ¢dopMaIn3My MBl BBO-
M HOBHI 06'bEKT, KOTOPBIA IO CUX NOp He paccMaTpHUBalCH. DTOT oBbeKT ABaAeTCH
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YUIOPANOYEHHBIM MHOKECTBOM BUPTY aJIBHBIX 9acTHl, KOTOPH MEl Ha3biBaeM “renepamms
KBaHTOHOB” . .

lenepanms xpanToHOB ABJAETCA OOBEKTOM HOCTATOYHO Pa3/MYaiomuMca OT KJIac-
CHYeCKOH MaTepmaabHoii TOYKH, YTOOH 06a1aTh MOIHOCTHIO KBaHTORO-MEXaHWIECKAM
TOBENEHNEM M KBaHTOBO-MeXaHMYECKUMHU CBOMCTBAMHU M B TO xe BpeMsa B JOCTaTOY-
HOMH cTenenu momoGexn KJIaCCHYEeCKOH MaTepUaJbHOR TOUYKe, YTOOBI OMUCATE ero Kak pe-
AJBHBIA OGBEKT B KiIacCHYecKoM ta3oBoM nmpocTpancTee. B NPpUHIMIE CyLUIeCTBOBaHHE
KBaHTOHOB MOKeT OBITH YCTaHOBJEHO SKCIIEPUMEHTAJILHEIM oGpasom.
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